NASA TECHNICAL NOTE NASA TN D-2863

o™
L -]
o0
(]
\ L
a N65-2 | |
-
S
h
s (ACCESSION
z NUMBER) {THRU)
(]
L4 k Dé/
£ I
m 5 (PAGES) {CODE) :
6 h
> N 0 g
(NASA CR OR TMX OR AD NUMBER)

{CATEGORY)

GPO PRICE § |

sr;/RICE(S) s /. /D

Hard copy (HC)

Microfiche (MF) i 52

NASA PERT TIME II

by Ross C. Bainbridge and Elizabeth Ryan

Lewis Research Center

Cleveland, Obio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION o WASHINGTON, D. C. « JUNE 1965

NASA TN D-2863

NASA PERT TIME II
By Ross C. Bainbridge and Elizabeth Ryan

Lewis Research Center
Cleveland, Ohio

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

For sale by the Clearinghouse for Federal Scientific and Technical Information
Springfield, Virginia 22151 —~ Price $1.00

NASA PERT TIME IT
by Ross C. Bainbridge and Elizabeth Ryan

Lewis Research Center

SUMMARY 25598

The NASA PERT Time IT program has been produced to answer the need for a
compiler language PERT time program. Flexibility, adaptability, and efficiency
are the prime considerations of the NASA PERT Time IT program. This program is
designed to be compatible with current and future data processing equipment con-
figurations in use throughout both government and industry. It is also compat-
ible with wvarious standards of input/output and is designed to cross computer
manufacturing lines. The program can easily be modified to change the approach
of analyzing PERT time networks and the methods of reporting the results of
these analyses. The capacity of the program is in excess of 30 000 activities
when utilizing a modular technique.

TINTRODUCTION & \/ﬂ

PERT (Program Evaluation and Review Technique) time is defined as a disci-
plined management technique involving computer processing. (A glossary of
terms is given in appendix A.) PERT time aids in the planning and control of
the variables, which are time and performance, of proJject development. FPERT
gives the project manager insight into his current and future program develop-
ment as well as potential problem areas related to its development. The total
usefulness of PERT, however, is entirely dependent on Jjudgement and analysis.
PERT can formalize planning and serve as a guide to control, but it cannot re-
place good management.

The purpose of this report is to present information relating to the NASA
PERT time program in Fortran IV compiler language. It includes a brief history
of program development, general algorithms used or developed to make the pro-
gram functional, and program systems information. The latter is designed to
give computer oriented professional and technical personnel enough insight into

the program functioning to allow for maintenance as well as further development
of the program.

In March of 1963, the version of PERT in use by NASA and its contractors
was a machine language adaptation of the Lockheed PERT time program. A combi-
nation of hardware and system developments in the computer industry and the dis-
advantages of maintaining a machine-coded program prompted NASA Lewls to pro-
pose that a PERT program be written entirely in compiler language. Some of

' these disadvantages can be summarized as follows:

(1) The machine-coded program could be run only on one manufacturer's
equipment.

(2) A great deal of time was being spent in maintaining machine-coded pro-
grams and in modifying them each time a system change was implemented.

(3) The adoption of new hardware (substitution of disk or drum for tapes)
by an installation even without a change of manufacturer often required exten-
sive rewriting of the machine-coded programs.

A compiler-written program would substantiaglly minimize these problems. Since
modifications to a compiler-written program can more easily be made by recom-
piling a source deck, language documentation would automatically be provided
for all modifications.

NASA Lewis also proposed that the PERT program be written in FORTRAN IV
because 1t is the compiler that has been implemented by most computer manufac-
turers, and it is the compiler language most used by industry as well as govern-
ment.

The Lewis proposal was accepted by NASA Headquarters in June of 1963. The
program development was divided into two phases. The first phase was a feasi-
bility study in which a program written in Fortran IV with a limited network ca-
pacity was produced. This program, known as the Lewis Goddard (NASA) PERT
Time I program, not only proved that an efficient Fortran IV coded program
could be produced but also became widely distributed throughout industry and
the government. (Performance data from this program can be found in appen-

dix B.) The second phase was to produce a program utilizing the concepts of
the first phase with a network capacity of at least 30 000 activities. It is
this program, known as the NASA PERT Time IT program, which is belng presented
in this report.

IMPLEMENTATION OF A MODULAR TECHNIQUE

The increased capacity of the NASA PERT Time II program is obtained by us-
ing a subnet technique. In the PERT network shown in figure 1, where the cir-
cles represent events and the connecting lines represent activities, the shaded
activities make up a subnet, as do the activities enclosed in the broken lines.
Note that there are three events common to both subnets. These events are
called interface events. Note that interfaces are events not activities.

In practical terms, a subnet is often a logical entity of some kind. For
instance, in a network (fig. 2) representing a project involving four contrac-
tors (A, B, C, and D) there could be four subnets each representing the work
assigned to one of the four contractors. It is not required that the interface
events have the same event number interior to each subnet in which they appear.
This eliminates the necessity of coordinating numbering of common events among
many contractors. To eliminate this, each interface event is given an alpha-
numeric name, the interface name, when its subnet is to be integrated. In fig-

2

Contractor B

Contractor C

Figure 1. - PERT network. Figure 2. - Project network.

ure 2z, for example, the interface
event that has been labeled SK1 may
be known in contractor A's subnet as
event 6 and as event 1 in contrac-
tor B's subnet. With reference to
the network as a whole, however, it
is simply interface event SKl.

Summary level

-I»»»»»
>
>

PROGRAM FEATURES

A useful feature of the program
is the provision for a different
type of subnet, the summary network.
Suppose the subnet shown in figure 3
below the dashed line is being main-
tained by a department for its own
use. It may be that only those
events with upward pointing broken

Figure 3. - Summary subnet. arrows need to be reported to high-~

er management. These events can

then be made interfaces to a new subnet, called the summary network, whose ac-
tivities are definable by the PERT analysts. The resulting summary subnet is
represented by the network above the dashed line. It is a summary of the origi-
nal subnet or subnets and shows not only event relation but also PERT network
logical flow as indicated by the sclid arrows. The program will compute time
estimates along each path of the summary network by using the detailed paths
from the original. 1If requested, activity cards for the summary network can be
punched out with delta time estimates., This deck can then be sent on to higher
management to be run as this department's subnet in a larger network.

[N I N S I N B 2

Detail level

CS-33106

Most existing PERT programs processed networks having either event or ac-
tivity oriented input, but not both. The NASA PERT Time II program is primarily
activity oriented, but it also provides for event oriented input. This was done

3

to eliminate the insertion into net-
works of dummy activities with zero
time estimates.

Test B
2 neels » - .
ED weeks - End testing e The activity connecting events 7

0 weeks) and 17 in figure 4 is an example of a
dummy inserted for the express purpose
of inventing a place to hang the label

CS-33144 END TESTING. What is actually needed

(3) here is a way of identifying event 7 as

the end of testing. The insertion of

the dummy has added an extra event and
activity to the network. This practice of substituting for event nomenclature
is quite common and causes a significant increase in the size and processing
time of a network.

Test C
3 weeks

Figure 4. - Dummy activity,

With the PERT TIME II program, the event 7 can be named directly by the use
of an event card:

000000 70000007 END TESTING

The event number is entered in both the predecessor and successor columns, and
nomenclature appears in the normal field. At report time, the event will appear
in normal sort order with its expected and allowed dates and slack. The event
card does not in any way enter into the PERT calculation.

The updating or file maintenance technique used in PERT Time ITI also repre-
sents a new approach. In previous PERT programs the master file has been noth-~
ing more than a tape bearing the activity cards for a given network. When it
was desired to change the network, the tape was first updated to obtain a new
master file, and the new master file was used as input for a complete reexecu-
tion of the network. The PERT Time IT program performs updating as a part of
the normal PERT run, thus eliminating duplication of operations. A binary tape
developed as part of the PERT calculation is used as the master file. This tape
contains not only the activity cards in packed form but also all other informa-
tion needed to make reports directly from the tape without recalculation. All
this information is separated by subnet. Since not all subnets may need to be
changed on a given update run, only those that are changed need be recalculated.
The master tape is read only once as updating and recalculation of a subnet are
overlapped. In addition to providing a fast and efficient update, this tech-
nique eliminates dependence on the availability of a second computer.

As a further aid to maintaining networks, completed activities may be de-
leted from the master file by control card option. This feature has two impor-
tant results. First, by eliminating past activities that no longer alter the
project schedule, it reduces the effective in-core size of the network. Second,
it has been found that a great deal of updating is done for the purpose of re-
moving completed activities. This type of routine updating can now be complete-
ly eliminated.

PROGRAM ANALYSTS

The program can be divided functionally into four sections by considering
together those subroutines concerned with network analysis, execution control,
reporting, and updating of a master tape.

Network Analysis

The analysis of a subnetted network proceeds in three distinct steps or
phases: the condensation of all subnets to obtain a control network, the cal-
culation of expected and allowed dates for the control network, and the final
determination of expected and allowed dates for each subnet for which a report
is requested.

First phase. - At the beginning of the first phase, all interface cards
and activity cards for a particular subnet have been read. The activity cards
provide a table of the activities, each defined by a beginning and ending
event, which make up this subnet. With each activity is associated a time es-
timate, a description, a scheduled or actual date if any, and other information.
The interface cards provide a list of all events in this subnet that also ap-
pear in another subnet and the corresponding interface names by which each such
event will be recognized whenever it appears throughout the entire network.

Subroutine TEST locates all start and end events for the subnet. If they
are not interface events they are made to be, so that the entire subnet is
bounded by interfaces. ©Subroutine TOPOL is now used to trace out all subnet
paths and to make time calculations as it proceeds (see appendix C). At this
point the expected and allowed dates for subnet activities cannot be determined
because they are affected at interface events by other subnets. However, for
all those activities on a path connecting two interface events a beginning and
ending time relative to the dates which will be determined for the interface
events can be calculated. Also, the greatest total time along all paths con-
necting any two interface events can be found and can be thought of as the es-
timated time for the control network activity defined by the interface events.
Since a given subnet can be affected by any other only at the points of connec-
tion between the two (i.e., at the interface events), only these control net-
work activities need be considered when relating this subnet to all others. The
first phase of analysis for each subnet then results in a calculated relative
time for each subnet event and a list of control network activities. The rela-
tive time calculations are placed in a separate file for each subnet. The list
of control network zsctivities from each subnet is added to a table which, after
all subnets have been processed, describes the control network.

Second phase. - The control network that was constructed in the first phase
of analysis is a complete network in its own right. It is an abstraction of the
original network and fully reflects all interrelationships between subnets. All
scheduled dates encountered in processing individual subnets have been carried
through to the control network so that these, together with the time span be-
tween interface events, make it possible to calculate expected and allowed dates
for each activity in the control network. The control network can, in other

words, be completely evaluated in
the same manner as any complete
nonsubnetted network. It is this
m evaluation that makes up the sec-
“ ond phase of analysis. The table
of activities which define the
control network is first sorted
by using subroutines PREPAR,
SS0RT, and MOVE so that all ac-
tivities originating at the same
interface event are together.
Subroutine TEST then isolates the
start and end events and calls on
subroutine TOPOL to trace out all
network paths and to compute ex-
pected and allowed dates for each
event, The event dates are then
Figure 5. - Sample deck sequences. converted to activity dates so
that both event- and activity-
oriented reports on the control network can be made at this time. The result
of the second phase of analysis therefore is to associate with each interface
event an expected and allowed date.

Activity cards

*END BATCH

(a) Subnetted network. (b} Nonsubnetted network,

Third phase. - The third phase of analysis 1s performed only on those sub-
nets for which a report has been requested. Since the first phase of analysis
has produced activity times relative to an interface event for each subnet ac-
tivity, and the second phase has determined expected and allowed dates for each
interface event, the third phase need only combine these two results to give a
complete description of an individual subnet. When a report of a given subnet
is requested, the control section of the program locates the file which contains
the relative time information for that subnet. The starts and ends for the sub-
net and paths have been previously determined so TOPOL can be called to trace
the subnet paths and compute expected and allowed dates directly. As the dates
for each activity are determined, these activity dates and all other descriptive
information (slack, time remaining, etc.) are placed in a file in a packed form
to conserve space. If output in predecessor order has been requested for this
network, it i1s printed at this time. The file with packed activity information
will be used by the report subroutines to perform any other outputs for this
subnet.

Execution Control

The analysis and reporting of a network is controlled by the main super-
visory routine ASKER in accordance with the asterisk control cards supplied by
the PERT analyst. The execution of a subnetted network whose deck format is as
shown in figure 5(a) will now be described.

The asterisk cards are read and interpreted one by one. The information
from the *DATE and *TITLE cards that defines the date and title of the network
is stored in the appropriate storage locations. When the *SUBNET card is read,
the subnet name is taken from it and placed in a 1list which will contain the

6

names of all subnets in the order encountered. The interface cards are read
and the interface name and event number are placed in their respective tables.
The *NETWORK card marks the end of interface cards and beginning of subnet ac-
tivity cards. When it is read, subroutine TEST is called to read the activity
cards and perform the first phase of analysis on this subnet. When the first
subnet has been condensed, control returns to ASKER and the next asterisk card
is read. ©Since other subnets follow, the procedure is repeated for each one.

When the last subnet has been condensed and control returned to subroutine
ASKER, the next card read is not a *SUBNET but a *REPORT card. This indicates
that all subnets have been read and condensed and causes ASKER to call on the
three sorting routines, PREPAR, SSCRT, and MOVE, which initiate phase two of the
net-work analysis (evaluation of the control network). After this second phase
has been completed, control again returns to ASKER, which interprets the *REPORT
card read previously. The name of the subnet is taken from the card and lo-
cated in the list of subnets. The output requests are interpreted, encoded,
and placed in a second list in a position corresponding to the position of the
subnet in the subnet name 1list. More cards are then read until a non-*REPORT
card indicates that all report cards have been read. Subroutines TEST and
TOPOL: are then called to perform the third phase of analysis on the first sub-
net requested. They will also perform the first output for that subnet if it
has been requested. The output request word is then checked again, and if fur-
ther reports are requested for this subnet, the reporting routines are called
to perform them. The process is repeated for each requested subnet in turn.

As mentioned previously, a non-¥REPORT card was read by ASKER before the
subnet reporting phase began. If that card was an *END BATCH card, execution
terminates as soon as all report requests have been fulfilled. If it was not,
another network is assumed to follow and all storages are re-initialized in
preparation for its processing. In this way the analysis and reporting of the
network is coordinated through the asterisk cards by subroutine ASKER.

A nonsubnetted network is handled in the same general manner (see fig.
5(b)). TFor such a network the ¥REPORT card and all other cards are read before
the ¥NETWORK card that immediately precedes the activity cards. Upon recog-
nizing the *NETWORK card, the network can be analyzed and reports made imme-
diately.

Reporting

If reports other than the predecessor output report are requested for a
given subnet, the output supervisory subroutine SUFER is called as soon as the
subnet has been evaluated. As the final part of this evaluation, the subnet
activities and associated data were placed in a file in packed form. The func-
tion of the reporting subroutines is to sort and output these activity data in
various formats as specified by the PERT analyst.

For each output requested SUPER consults a table contained in the program
which provides indicators of the primary and secondary keys to be used. To re-
define, add, or delete output types only this table need be changed. A second

table is then consulted to find the information needed to extract each key from
the packed activity records. The records are then read from the file into the
activity buffer, which is essentially a table of activity records in order by
predecessor. The sort routines PRSCAN and SORT then determine the order of the
records with respect to the keys for this particular report and output each ac-
tivity in its correct order. The method by which this order is determined will
be described in detaill in appendix D; however, it is necessary here to mention
that the activities as they are in the activity buffer are not rearranged in
any way. Because of this, succeeding output formats for this subnet can be
produced without having to reread the activities from the file. As each output
is completed, the output supervisory routine need only obtain from the tables
descriptive information for the next output format and call the sort routines
again.

Of course, only a limited amount of core storage is available to be used
as an activity buffer, and 1t is quite possible that the size of the subnet
being reported may exceed the size of the buffer. The preceding discussion has
assumed that this is not the case. In those cases where subnet size does ex-
ceed buffer size a merging process is required to perform the various outputs.
This process is begun by reading a full buffer load of activities into the core
and determining their order in the same manner as was done before. The activ-
ities are then placed in an intermediate file (in order relative to the re-
quested format). The next buffer load is then read, ordered, and placed in a
second file. If more activities remain, the third buffer load will be placed
as a second set in the first file, and the fourth as a second set in the second
file. Similarly, all odd-numbered buffer loads will be placed as additional
sets in the first file and even-numbered loads in the second file. When all
activities have been treated in this manner, the process of merging the two
files begins.

The activity buffer is divided into four sections with two sections as-
signed to each of the files 1 and 2. Initially all sections are filled with
activities from their respective files. Comparisons are then made between the
activity keys from each file. At each comparison, the activity whose key is
smaller is written in a third intermediate file which will be referred to as
file 3. As soon as one of the sections assigned to file 1 or file 2 has been
completely written on file 3, it is filled with more activities from its asso-
ciated file while comparisons continue from the other section. In this way the
first set of activities from file 1 and 2 are merged to form a larger set on
file 3. The second sets from file 1 and 2 are then combined and placed as the
first set in file 4. The third and any succeeding odd-numbered sets from files
1 and 2 will be merged and placed as additional sets in file 3; the even-
numbered sets will be placed in file 4, When files 1 and 2 have been exhausted
and all their activities placed in files 3 and 4, files 3 and 4 will be merged
in the same way and placed in file tapes 1 and 2. The process continues until
the files being merged each contain only one set of activities. At this point,
rather than being written in an intermediate file, the activity whose key is
found to be smaller after each comparison is written as output. The entire
procedure is repeated for each output format requested. Since the activity re-
cords are in a packed form, all output is done by using subroutine OUTPUT,
which must unpack and format the information associated with each activity.

As each item of information about an activity is required, a subroutine FIND is
referenced which determines from a table the location and form of the item in
the packed activity record. With this information the item is extracted from
the record and is then correctly formatted by subroutine OUTPUT.

Updating the Master File

The master file produced by the NASA PERT Time IT program is constructed
in the following manner. Information for each subnet is separated by ends of
file from information relating to other subnets. For each subnet, the master
file contains the subnet name, a flag to distinguish between subnets and sum-
mary subnets, all interface cards, tables which give rélative times calculated
for every event in the subnet, control activities and their associated time
durations, and the activity cards for the subnet.

The update feature makes it possible to modify any of the interface cards
or activity cards and to change the subnet-summary declarations as they appear
on the master file. Entire subnets may be added to or removed from the master
file.

The sequence of operations in performing an update is as follows. When
update cards for a given subnet are encountered on the input deck, the control
routine ASKER begins reading the master file in search of the update subnet.

If the subnet whose information is encountered is not the update subnet, its
information is copied onto the new master tape and its control activities saved
for control network analysis. This can be done since it is required that up-
date cards for each subnet to be updated appear in the input deck in the same
order as the subnets appear on the master file. It can be assumed, therefore,
that any subnets passed over in searching the master file for an update subnet
will not be updated themselves and that their master file information will still
be valid and can be used in the second and third phases of network analysis.

The copying process is continued until the update subnet is encountered; at

this time control is transferred to the update subroutine UPDATE.

Subroutine UPDATE reads all interface update cards and sorts them by using
subroutine USORT. The interface cards in the master file are then read and
checked for order by using subroutine USORT. If the cards are unordered, they
are sorted. The master file interface cards are then updated as specified by
the input cards, and the resulting interfaces are placed in the new master file.
When all interface updates have been performed, control passes to subroutine
ACTMOD. (If no interface updates appear, the master file interface cards are
copied into the new master file and control passes immediately to ACTMOD.)

Subroutine ACTMOD reads the activity update cards and calls subroutine
USORT to order them. The subnet activities from the master file are compared
in turn to the activity update cards. Since the update cards have been sorted
and it is required that the activities in the master file be ordered by prede-
cessor and successor event numbers, any activity having event numbers less than
those on the current update card will not itself be updated. All such activ-
ities are retained in the subnet. If the event numbers of the update card are

less than those of the master file activity, the update activity will be added
to the subnet at a point just ahead of the master file activity. If the update
card is strictly an alteration card it must refer to a nonexistent activity and
will Dbe. ignored. As the third case, when the event numbers of the master file
activity and update card are identical, the master file activity will be al-
tered as specified by the update card.

Each comparison of master file activity numbers to update activity numbers
results in a call to subroutine ADD. The function of subroutine ADD is to
build a file containing the updated subnet. Depending on the results of the
comparison, ADD will insert the original master file activity, the update ac-
tivity, or an altered master file activity into the new file. After all master
file activities and update cards have been processed, the new file contains the
entire subnet as updated. Control then is given to subroutine TEST which reads
the subnet activities from the new file and performs subnet analysis. After
analyzing the subnet, TEST places its master file information in the new master
file.

When all subnets have been updated or copied into the new master file, con-
trol network analysis is performed by using the control information collected
while reading the 0ld master file for updating. If reports are requested, they
are then made in the usual manner.

The master file for nonsubnetted networks contains a record giving the
number of activities, starts, and ends with some other network information fol-
lowed Dby the network activities. To update such a master file, subroutine
UPDATE spaces past the first record of the file and then transfers control to
ACTMOD, which performs the activity updates in the same manner as described
previously. After the update is complete, the network is analyzed and reports
made in the usual manner for nonsubnetted networks.,

Lewis Research Center,
National Aeronautics and Space Administration,
Cleveland, Ohio, March 24, 1965.

10

APPENDIX A

GLOSSARY OF TERMS IN LOGICAL ORDER

EVENT

ACTIVITY

NETWORK

SUBNET

START EVENT
END EVENT
INTERFACE EVENT

INTERFACE NAME

CONTROL NETWORK EVENT

CONTROL NETWORK ACTTVITY

CONTROL NETWORK

identifiable instant in time

time consuming element defined by a starting (prede-
cessor) event and an ending (successor) event

collection of activities and their associated events
subset of a network

event which is not a successor event

event which i1s not a predecessor event

event common to more than one subnet

unique alphanumeric identifier for an interface
event

all start events, end events, and interface events
relative to a particular collection of subnets

activity constructed by condensing to a single ac-
tivity all paths between two control network

events

network formed by all control network activities and
their assoclated events

11

APPENDIX B

PERFORMANCE DATA

The NASA PERT Time I program has been successfully run on machines of sev-
eral different manufacturers and the run times have been considered favorable
on all machines used thus far. The following performance data are for the
first phase, PERT Time I, as recorded on an IBM 7094 running tape to tape using
729V tape drives at 800 BPI on two data channels:

Activities | Outputs Time, min

PERT Time I| Mod-B

200 3 0.2 0.4

200 5 .3 .7

300 4 .4 .7
1000 5 2.5 2.7
1600 3 2.5 2.9
2830 4 7.5 6.5

Times are exclusive of load time and reflect some time savings obtained by the
blocking of output at 5 lines per record.

Time studies were run by using the configuration against the NASA PERT
Mod-B machine-coded program that was then still in production at Lewis. Com-
parative timings on the machine indicate that the program is 50 percent faster
than the Mod-B PERT machine-coded program for networks under 1100 activities,
requiring no output merging; equal in speed for networks between 1100 and 2100
activities, requiring a single output merge; and within 10 percent for networks
over 2100 activities, requiring multiple output merges.

Since the original time study was conducted, computer configurations have
been modified and the following times for a directly coupled IBM 7094 model IT
IBM 7040 with a disk, drum, and four model VI tape units can be reported:

Activities | Outputs | Time, min

O to 1000 | 3 to 5 Under 0.5
1000 to 2000 | 3 to 5 Under 2.0
2000 to 3000 | 3 to 5

Under 5.0

12

APPENDIX C

TOPOLOGICAL, PROCEDURES

The topological or network analyzing procedures used in the NASA PERT Time
I and II programs are not the familiar topological sorting techniques used in
other PERT programs. The technique used here is an application of pushdown
lists or tables more commonly used in compilers and recursive routines. It is
a modification of an algorithm introduced by Hans Bremer of the Goddard Space
Flight Center (ref. 1).

A pushdown table is a serially ordered table of activities constructable
by the addition of an activity or the removal of the most recently added activ-
ity. With the use of this table all possible paths from start events to end
events can be analyzed with a minimum of bookkeeping. At the end of the anal-

yses one wishes to be able to answer the two following questions about any
given event:

(1) What is the earliest possible time when this event can be expected to
occur?

(2) What is the latest possible time when this event can be allowed to
occur?

The answer to the first question is called the expected time. The answer to
the second question is called the allowed time. In any given path from a start
event to an end event, the expected time of an intermediate event depends on
earlier activities and must be forward calculated from the start event, while
the allowed time depends on later activities and must be backward calculated
from the end event. As subsequent paths are analyzed, expected times are al-
tered only when they increase, since only the most pessimistic expected time is
desired; allowed times are altered only when they decrease, since only the most
optimistic allowed time is desired.

The general idea of the technique is as follows: TFor every start event
determine all possible paths originating here and calculate expected and al-
lowed times for all events on such paths. Two lists are maintained, both of
the pushdown type. The first is called the pushdown list, and the second, the
path list. As a path is generated, activity by activity, from a given start
event to some end event, branches which are not taken are saved in the pushdown
list. After expected and allowed times have been calculated for all events on
the path, a new path i1s generated by deleting activities from the end of the
former path until there is available in the pushdown list an activity that will
extend the path remaining in the path list. This new path is completed in the
same manner as before. When the pushdown list is exhausted, all paths origina-
ting from that given start event have been generated. When all start events
have been thus treated, the network analysis is complete. (A detailed example
of this appears at the end of this appendix).

The expected times are calculated as a path is completed by the use of a

Y

13

table of events. These event tables are used to keep expected and allowed
times for each network event. The expected times are forward calculated and
replace the previously calculated event expected time in the events table
(TSUPE) only when the expected time now being calculated is greater. Allowed
times are calculated from the last to the first event with replazgﬁent of the
previously calculated allowed time in the events table (TSUPL) only when the
currently calculated allowed time is smaller. When output reports are required,
it becomes a simple matter to interrogate the events tables to get the prede-
cessor and successor event times,

The following methods were used to modify the basic topological procedure
and to increase its efficiency:

(1) Sequential numbering of the events eliminated events table searching.
This sequential numbering also eliminated the necessity for retaining internally
the actual event numbers.

(2) Retention of the activity position counter in an events table elimi-
nates any activity table searches. This in turn eliminates the necessity for
retaining internally the predecessor event of an activity.

(3) The process of calculating expected times and allowed times at all
events was shortened by using the following theorems:

Theorem A: If in the course of the forward calculation of expected times
for events along a specific path one computes an expected time less than the
previous value, the forward calculation may be terminated without affecting fi-
nal answers.

To prove this theorem, let C be the computed time and P be the previous
time for event E. Then we are given P > C. If N 1is the time associated
with the next activity in the path, the new computed time at its successor event
is C + N, while the previous time is P + N. Clearly P+ N > C + N, so the
expected time will not be altered. In general, if S is the sum of the times
for the activities between event E and an arbitrary event F on this path,
P+ S>C+ S implies that the expected time for event F will not be altered.

Theorem B: If in the course of the backward calculation of allowed times
for events along a specific path, one computes an allowed time greater than the
previous value, the backward calculation may be terminated without affecting
final answers.

The proof for this theorem is as follows. With C and P analogously
defined, we are given P < C. Then P+ N <C+ N for the next backward step
and P+ S <C+ S for an arbitrary number of backward steps implies that no
future allowed times will be altered were the process to continue.

A detailed example is now given. Let the activities in a table be 1-2,

14

2-3, 3-4, 3-6, 3-7, 4-5, and 6-5 corresponding to the network

4

N
1 >2->2>3->6>5

N

A

7

with start event 1 and end events 5 and 7.

Activities 1-2 and 2-3 are successively moved from the activities table to
the pushdown list and removed from there to the path list, at which time the
conditions of the pushdown and path lists are as follows:

Activities | Push down | Path

(empty) 2-3
1-2

Next, activities 3-4, 3-6, and 3-7 are added to the pushdown list. Then
3-7 is removed and added to the path list giving the following condition:

[ﬁActivities Push down | Path

3-6
3-4

Since 7 is an end event, the path in the path list is now analyzed. Activ-
ity 3-7 is removed, and activity 3-6 is moved over to the path list. Finally,
activity 6-5 is moved from the activities table to the pushdown list to the path
list. This completes a second path and gives the following condition:

15

Activities | Push down | Path

3~4

After this second path is analyzed, activities 6-5 and 3-6 are removed
from the path list, and activity 3-4 1s moved over to the path list. Then ac-
tivity 4-5 is moved from the activities table to the pushdown list to the path
list, thus completing the final path and giving the following condition:

Activities | Push down | Path

(empty)

After this path is analyzed, activities 4-5, 3-4, 2-3, and 1-2 are succes-
sively removed leaving both lists empty at the completion of the analysis.

16

APPENDIX D

SORTING TECHNIQUES

In preparing reports it is necessary to determine the order, with respect
to several possible formats, of the activity records which make up each subnet.
Because this ordering must be performed many times during the execution of any
network, the procedure used must be as efficient as possible. The ordering
method developed for use in NASA PERT Time I and IT is now described.

The activity buffer into which the activity records have been placed con-
stitutes a table of activities and their associated information. For each ac-
tivity in the network there is an activity record and each record contains sev-
eral storage words of information about its activity. Each item of activity
information (predecessor and event numbers, expected and allowed dates, slack,
department code, etc.) is assigned a fixed position in the activity record.
With each item of information, then, can be associated two subscripts; the first
refers to the position of its activity record in relation to all other records
and the second to the particular item's position relative to all other activity
information in the record. (An item of information pertaining to the 10th ac-
tivity and which was assigned the 4th word in the activity record would have
subscripts 10 and 4. The same item of information about activity 25 would have
subscripts 25 and 4.)

Rather than rearranging the activity records themselves, which would be
costly both in terms of execution time and core storage usage, the ordering
routine rearranges their associated subscripts. At the termination of the or-
dering procedure there will have been produced a list of subscripts whose order
indicates the order of their associated activity records with respect to the
given key.

The initial phase of the process is a scanning of the activity keys to
determine the extent of natural order as the records lie in core. Both ascend-
ing and descending order is detected. A list is constructed as follows: Posi-
tion 1 of the list contains the number of activity records which make up the
first sequence of ordered records; the sign is made negative to indicate ascend-
ing order or positive to indicate descending order. The second position refers
in the same way to the second sequence and so on, so that if the activity buff-
er consists of n such sequences, there will be n entries in the list. If
the activities lie in the buffer as shown in step 1 of table I, the list pro-
duced would be as shown in LIST;. The first four activities are in ascending
order as are the next three. The four activities following the second sequence,
however, are in descending order so that the entry 1s positive. The twenty-five
activity records consist of seven sequences as described in LIST.

The remainder of the ordering procedure consists of combining consecutive
pairs of sequences to form half as many sequences of combined length. The
smaller activity key from the first sequence is compared to the smaller from
the second sequence. The subscript of the activity whose key is smaller is
placed in the first position of a second list (depicted in table I step 2 as

17

TABLE I. - ORDERING PROCEDURE
Step 1 Step 2 Step 3
Keys | LIST, | LIST, | LIST, LISTy | LIST«
3 -4 7 1 17 11
5 -3 10 5 8 1
7 4 S 2 12
8 -6 2 6)
4 3 3 10
& 3 4 13
9 2 7 2
7 11 9
o 12 3]
4 10 14
1 13 3
3 9 8
4 14 15
¢ 8 4
7 15 7
9 16 16
11 17 17
10 23 23
8 22 25
6 20 24
7 21 22
O 19 20
1 18 21
4 25 19
3 24 18

—_— —_ . — B S —

LIST,). If the smaller key came from se-
guence 1, the key for the next activity in
sequence 1 is compared to the first activ-
ity's key in sequence 2. The subscript of
the smaller is placed in the second position
of LISTZ. Comparisons continue until sub-
scripts of all activities in one of the se-
quences have been placed in LIST;. The sub-
scripts from the remaining sequence are

then placed in LIST, and the combining pro-
cess is repeated for the next two sequences.
As each pair is combined, LIST; is revised
to reflect the combined length of the se-
quences. Step 2 shows LISTy and LIST, fol-
lowing the first stage of sorting whereby
the seven original sequences were reduced

to four. LISTy then indicates that the ac-
tivities associated with the first seven
subscripts form a sequence as do the activ-
ities associated with the next ten, etc.

All entries in LISTy are now left positive
since after the first combination pass all
sequences have been constructed in ascend-
ing order.

The four sequences given by LIST2 are
now combined in the same manner to produce

two sequences that are described by a list of subscripts in LISTS. (The con-
clusion of this pass is represented in step 3.) Ordinarily at this point,
LISTz together with LIST; would be used to produce a new list which will be

placed in LIST,, so that LIST,

In practice, however,
activity whose key is smaller is simply written as output after each compare.

18

and LIST3 are alternately used and overwritten,
once the number of sequences has been reduced to two the

REFERENCE
1. Bremer, Hans: Topological Ordering Using the Pushdown Technique. Proc.

NASA/Industry PERT Computer Conf., Manned Spacecraft Center, Houston
(Texas), July 22-23, 1964, pp. 8-1 - 8-24.

NASA-Langley, 1965 1K -2909

19

